Name	
1101110	 -

Fall, 2007

Applied Statistics Comprehensive Examination

Statistical Theory I & II

Calculators are not permitted on this part of the examination.

Answers to all questions require complete explanations to receive full credit.

- (20) 1. A factory has three different assembly lines that manufacture the same product. Line A accounts for 50%, Line B for 30% and Line C for 20%. The rates of defective products are 10% for Line A, 20% for Line B, and 40% for Line C. Suppose that one product is selected at random from the factory's output.
 - a. What is the probability that the product is defective?
 - b. If the product is defective, what is the probability that it came from Line C?
- (20) 2. Suppose X_1 and X_2 are independent random variables with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 respectively. If $Y = X_1 X_2$, find the mean and variance of Y.
- (30) 3. Let X_1 , X_2 and X_3 be a random sample from a population with probability density function

$$f_X(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

where $\theta > 0$.

- a. Find the method of moments estimate of θ .
- b. Find the maximum likelihood estimate of θ .
- (30) 4. Let X_1, X_2, \ldots, X_n be a random sample from a population with probability mass function

$$p_X(x) = \begin{cases} p(1-p)^x & \text{if } x = 0, 1, \dots \\ 0 & \text{elsewhere} \end{cases}$$

where 0 .

- a. For n=1, find the power function of the test with critical region $x \leq 1$.
- b. For any positive integer n, using the Neyman-Pearson Lemma, find the best critical region when testing H_0 : $p = \frac{1}{2}$ versus H_a : $p = \frac{3}{4}$. Simplify your answer.
- c. Determine if the critical region found in part b is best when testing H_0 : $p = \frac{1}{2}$ versus H_a : $p > \frac{1}{2}$, and give reasons for your answer.