| 'NT | | | | |------|--|------|--| | Name | | 5.3 | | | | |
 | | Spring, 2007 ## Applied Statistics Comprehensive Examination ## Statistical Theory I & II Calculators are not permitted on this part of the examination. (20) 1. Suppose X_1 , X_2 , and X_3 are independent random variables, where X_1 has a normal distribution with mean 2 and variance σ^2 , X_2 has a normal distribution with mean 1 and variance σ^2 and X_3 has a normal distribution with mean 2 and variance σ^2 . Let $$W = c \left[\frac{4(X_1 - 2)^2}{(X_2 - 1)^2 + (X_3 - 2)^2} \right]$$ Find c such that W will have an F(1,2) distribution. Simplify your answer. (25) 2. Let X_1 , X_2 , and X_3 be independent Poisson random variables with means θ , 2θ and 3θ , respectively. Derive the maximum likelihood estimator of θ . Simplify your answer. (25) 3. Let X_1, X_2, \ldots, X_n be a random sample from a population with probability density function $$f_X(x) = \begin{cases} \theta(4-x)^{\theta-1} & \text{if } 3 \le x \le 4 \\ 0 & \text{elsewhere} \end{cases}$$ where $\theta > 0$. - a. Consider $H_0: \theta = \theta_0$ versus $H_a: \theta = \theta_a$ where $\theta_a > \theta_0$. Find the best critical region (Neyman-Pearson Lemma) for this test. Simplify your answer. - b. If there is only one observation X from this population, find the best critical region with $\alpha=0.05$ when testing H_0 : $\theta=1$ versus H_a : $\theta=2$. - (30) 4. Let T_1 and T_2 be unbiased estimators of a population parameter θ , each estimator based upon a different independent random sample. Let T_1 and T_2 have variances σ_1^2 and σ_2^2 , respectively. - a. Show that $T = \lambda T_1 + (1 \lambda)T_2$ is also an unbiased estimator of θ . - b. Find the value of λ that minimizes the variance of T. - c. Discuss how the solution to the problem in part b would change if T_1 and T_2 were based on the *same* random sample. (It is not necessary to find this new solution. Just indicate what would have to be considered.)