Attitudes Matter!
New Instruments in Motivational Attitudes Toward Statistics / Data Science
MathFest 2022

Michael A. Posner, Villanova University
Alana Unfried, California State University, Monterey Bay
Douglas Whitaker, Mount Saint Vincent University
April Kerby-Helm, Winona State University
Marjorie Bond, Monmouth College
Leyla Batakci, Elizabethtown College
Attitudes

- Attitudes Matter in Education! (Pearl et al., 2012)

- We want students to **thrive in the data deluge**

- **Instructor attitudes** and course environment impact **student attitudes**

- Understanding attitudes can help us identify **evidence-based best practices for teaching data science and statistics**
Existing Instruments (Examples)

Student Instruments
- **Survey of Attitudes toward Statistics (SATS; Schau, 1992)**
 - Most widely used
- **Issues** (Whitaker, Unfried, & Bond, 2022)
 - Lack of validity evidence
 - Incomplete alignment to theoretical framework
 - Ceiling effects on some scales
 - Rigid pre-post structure
 - Requires stats course enrollment
 - Use restricted - fees/permission

Instructor/Environment Instruments
- **Statistics Teaching Inventory (STI; Zieffler et al., 2012)**
 - Snapshot of instructor practices in Introductory Statistics
- **Issues**
 - Does not measure attitudes or learning environment characteristics
 - Not linked to student measures

No Validated Data Science Attitudes Instruments
MASDER:

Motivational Attitudes in Statistics and Data Science Education Research

- 3-year NSF IUSE grant (Oct ‘20 - Sept ‘23)
- Strong theoretical framework (EVT) and rigorous development process
- Family of 6 instruments evaluating student and instructor attitudes toward statistics and data science, and the learning environment
- Conduct nationally-representative sample of students and instructors
- Create website interface for each implementation and dissemination of general and instructor-specific results
- Promote Stat/DS Ed Research - improve instruction by understanding the relationships between components
Surveys Of Motivational Attitudes toward...

<table>
<thead>
<tr>
<th></th>
<th>Student Instrument</th>
<th>Instructor Instrument</th>
<th>Environment Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>S-SOMAS</td>
<td>I-SOMAS</td>
<td>E-SOMAS</td>
</tr>
<tr>
<td>Data Science</td>
<td>S-SOMADS</td>
<td>I-SOMADS</td>
<td>E-SOMADS</td>
</tr>
</tbody>
</table>
Distinction between S, I, and E Surveys

<table>
<thead>
<tr>
<th>Student Instruments</th>
<th>Instructor Instruments</th>
<th>Environment Inventories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures attitudes toward Stat or DS</td>
<td>Measures instructor attitudes toward teaching Stat or DS</td>
<td>Measures institutional and course characteristics, learning environment, and enacted classroom behaviors</td>
</tr>
<tr>
<td>Pre and post (optional)</td>
<td>Measure teaching experience, background, etc.</td>
<td>Instructor completes for each section</td>
</tr>
<tr>
<td>Can be used longitudinally, including after college</td>
<td>Administered periodically</td>
<td></td>
</tr>
</tbody>
</table>

- **Student Instruments**
 - Measures attitudes toward Stat or DS
 - Pre and post (optional)
 - Can be used longitudinally, including after college

- **Instructor Instruments**
 - Measures instructor attitudes toward teaching Stat or DS
 - Measure teaching experience, background, etc.
 - Administered periodically

- **Environment Inventories**
 - Measures institutional and course characteristics, learning environment, and enacted classroom behaviors
 - Instructor completes for each section
Development Timeline for S-SOMAS/DS

Identify need for a new instrument
- Research On Statistics Attitudes (ROSA) working groups
- 3 workshops funded by ASA

Develop theoretical models
- Started at USCOTS workshop
- Continued refinement in consultation with experts and through survey analysis

Create Pilot 0 S-SOMAS Instrument
- Write construct definitions and develop items
- Conduct student focus groups and subject matter expert review

Administer, Analyze, and Revise Pilot 0
- 2,381 students from 6 institutions

Administer, Analyze, and Revise Pilot 1
- 588 students from 15 institutions
- SOMADS Development
- SOMADS SME Workshop

Administer, Analyze, and Revise Pilot 3
- 87 students from 4 institutions
- SOMADS Refinement

Spring 2021
- Administer, Analyze, and Revise Pilot 1
- 2,546 students from 41 institutions

Fall 2021
- Administer, Analyze, and Revise Pilot 1

Spring / Summer 2022
- Administer, Analyze Pilot 3

MASDER Grant Awarded
Meta-Model

Surveys of Motivational Attitudes toward Statistics and Data Science

Meta-Model Explaining Student Achievement in Statistics and Data Science

Environment Model

- Institutional Structures and Characteristics
- Enacted Classroom Behaviors

Instructor Motivation

Instructor Professional Activities

EVT Model for Instructors

- Student Motivation
- Student Background

Student Achievement

- Student Survey S-SOMAS S-SOMADS
- Environment Inventories E-SOMAS E-SOMADS
- Instructor Survey I-SOMAS I-SOMADS

Assessed by other instruments not in family of instruments
Student Model

Survey of Motivational Attitudes toward Statistics (SOMAS)
Survey of Motivational Attitudes toward Data Science (SOMADS)

Student Expectancy-Value Theory Model

Goals and Self-Schemata
- Minimum Standard for Achievement
- Career/Life Goals
- Goal Orientation (Intrinsic/Extrinsic)
- Academic Self-Concept

Subjective Task Value
- Interest/Enjoyment Value
- Attainment Value
- Utility Value
- Costs and Benefits

Beliefs & Stereotypes about Statistics/Data Science

Student Background, Aptitude, and Perceptions of Others’ Attitudes and Expectations

Self-Concept of Statistics/Data Science Ability

Performance Behaviors → Achievement

Perception of Difficulty

Expectancies
Constructs and Definitions

<table>
<thead>
<tr>
<th>Construct</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectancy</td>
<td>How the student thinks they will perform in the field of statistics</td>
</tr>
<tr>
<td>Perception of Difficulty</td>
<td>How difficult the student perceives statistics to be</td>
</tr>
<tr>
<td>Utility Value</td>
<td>How much the student values statistics for serving or achieving their goals.</td>
</tr>
<tr>
<td>Interest/Enjoyment Value</td>
<td>The interest a student has in statistics, or their enjoyment from it</td>
</tr>
<tr>
<td>Attainment Value</td>
<td>How important success in statistics is to the student</td>
</tr>
<tr>
<td>Costs and Benefits</td>
<td>Factors that deter from learning stats, or benefits of learning stats</td>
</tr>
<tr>
<td>Academic Self-Concept</td>
<td>Student perceptions about the academic achievement (general and stats-specific)</td>
</tr>
<tr>
<td>Goal Orientation</td>
<td>What drives the students to learn statistics</td>
</tr>
</tbody>
</table>
Example Utility Value Items

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Somewhat disagree</th>
<th>Neither agree nor disagree</th>
<th>Somewhat agree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I need to know statistics to satisfy employers.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I will rarely use statistics in the future.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>No one in my career field uses statistics.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I value statistics because it makes me an informed citizen.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Studying statistics is pointless.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

← Negatively Coded
Instrument Design

“I’ll take 3-letter acronyms for $200, please”

Item design, SME, Pilots

7-point data, 6-factor EFA, cutoff = 0.40
Get Involved!

Serve as a Subject Matter Expert (SME)

Pilot the surveys in your classrooms and as an instructor

See more and sign up to stay updated via our website: SDSAttitudes.com

Help spread the word about the instruments and our website!
MASDER Contact Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institution</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alana Unfried</td>
<td>Principal Investigator</td>
<td>California State University, Monterey Bay</td>
<td>aunfried@csumb.edu</td>
</tr>
<tr>
<td></td>
<td>Grant Administration & Instrument Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marjorie Bond</td>
<td>Co-Principal Investigator</td>
<td>Monmouth College (Illinois)</td>
<td>mebond@monmouthcollege.edu</td>
</tr>
<tr>
<td></td>
<td>Grant Coordinator, Environment Survey, Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April Kerby-Helm</td>
<td>Co-Principal Investigator</td>
<td>Winona State University</td>
<td>akerby@winona.edu</td>
</tr>
<tr>
<td></td>
<td>Data Science & Data Wrangler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael A. Posner</td>
<td>Co-Principal Investigator</td>
<td>Villanova University</td>
<td>michael.posner@villanova.edu</td>
</tr>
<tr>
<td></td>
<td>Data Science & Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Whitaker</td>
<td>Co-Principal Investigator</td>
<td>Mount Saint Vincent University</td>
<td>douglas.whitaker@msvu.ca</td>
</tr>
<tr>
<td></td>
<td>Instrument Development & Theoretical Frameworks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyla Batakci</td>
<td>Other Senior Personnel</td>
<td>Elizabethtown College</td>
<td>batakcil@etown.edu</td>
</tr>
<tr>
<td></td>
<td>Environment Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wendine Bolon</td>
<td>Other Senior Personnel</td>
<td>Monmouth College (Illinois)</td>
<td>wbolon@monmouthcollege.edu</td>
</tr>
<tr>
<td></td>
<td>Environment, Cost/Benefit, Application of Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jennifer Green</td>
<td>External Evaluator</td>
<td>Michigan State University</td>
<td>jg@msu.edu</td>
</tr>
</tbody>
</table>
References

Mair, P., & De Leeuw, J. (2019). Gifi: Multivariate Analysis with Optimal Scaling (R package version 0.3-9) [Computer software]. https://CRAN.R-project.org/package=Gifi

