The Effect of Previous AMI on Mortality Following Subsequent AMI

Michael A. Posner, M.S.
Boston University
American Public Health Association Meeting
San Francisco, CA
November 18, 2003

Acute Myocardial Infarction (AMI)

• Also known as Heart Attacks
• Leading cause of death in U.S.
 – One-year post-AMI mortality is 30% (in Medicare)
• High Prevalence
 – 1.1 million people in U.S. have AMI each year
 – 395K AMI hospitalizations in Medicare population
• Expensive
 – Estimated $3.6 billion in costs

Original Hypothesis about the Role of Previous AMI

Advances in practice and technology
 More survivors
 More deaths
 More admissions for second AMIs

Methods - Case Identification

• All Medicare patients with a principal inpatient diagnosis code of AMI in 1995
 – ICD9-CM code 410xx, except 410x2
 – Using MedPAR
• Include only if eligible for part A (HI) and part B (SMI) for entire prior year
 – To ensure data completeness
 – Excluded/included similar with respect to gender, age, race, comorbidity
• Transfers (11.3%) rolled up into one record
 – Admission within 1 day of discharge
 – In line with published literature

Acknowledgements

• Arlene Ash, Ph.D.
• Eric Green, M.D., M.Sc.
Methods - Comorbidity Burden

• Diagnoses observed in the 365 “pre-” period
 – Using MedPAR, Outpatient, Carrier (Not labs)
• DCG Score
 – Hierarchical categorization of diagnoses
 – Relative Risk score: expected cost in the upcoming year, relative to average cost
 – RR = 2.0 \(\rightarrow\) “expected to cost 2 times average”
• Calculated based on pre and index separately
 – Index diagnoses may reflect complications caused by the admission

Methods – Identifying Previous AMI

• Inpatient admission for AMI
 – Principal MedPAR diagnosis 410xx (not 410x2)
• Sensitivity Analyses
 – 1. Any MedPAR diagnosis 410xx (not 410x2)
 – 2. Any diagnosis (MedPAR, outpatient, carrier) of 410xx (not 410x2)
 – 3. Any diagnosis of 410xx or 412xx (old MI)

Methods - Statistical Analysis: Multiple Logistic Regression

• Outcome: One-year mortality
• Exposure: previous AMI
• Covariates:
 – Age
 – Gender
 – Original Reason for Entitlement (aged vs ESRD/disabled)
 – DCG score (in categorical ranges)

Results - Population Characteristics

<table>
<thead>
<tr>
<th>Cases</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>305,468</td>
<td>287,358</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Age (mean)</td>
</tr>
<tr>
<td>ESRD/Disabled ORE</td>
</tr>
<tr>
<td>Mean DCG (pre)</td>
</tr>
<tr>
<td>Mean DCG (index)</td>
</tr>
<tr>
<td>prev AMI (Inpt Adm)</td>
</tr>
<tr>
<td>prev AMI (Any Dx)</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>CHF</td>
</tr>
</tbody>
</table>

Results - Bivariate Analysis

• AMI in previous year (n=56,889)
 – 27% died
• No AMI in previous year (n=248,579)
 – 33% died
• Crude estimate: 25% lower odds of dying within one year of an AMI for those with previous AMI relative to those without a previous AMI

Note: p-values are always significant in huge data sets \((p-value = 2.24 \times 10^{-166}) \)

Results - Multivariate Analysis

<table>
<thead>
<tr>
<th>Odds Reduction</th>
<th>c-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>25%</td>
</tr>
<tr>
<td>Core</td>
<td>15%</td>
</tr>
<tr>
<td>+index</td>
<td>26%</td>
</tr>
<tr>
<td>+pre</td>
<td>44%</td>
</tr>
</tbody>
</table>

Odds Reduction = % reduced odds of post-AMI mortality with previous AMI
Results – Sensitivity Analysis

<table>
<thead>
<tr>
<th></th>
<th>Main Analysis</th>
<th>Sensitivity Any Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>25%</td>
<td>6%</td>
</tr>
<tr>
<td>Core</td>
<td>15%</td>
<td>-2%</td>
</tr>
<tr>
<td>+index</td>
<td>26%</td>
<td>10%</td>
</tr>
<tr>
<td>+pre</td>
<td>44%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Table presents Odds Reductions

Conclusions/Discussion

• Previous AMI is protective against mortality following subsequent AMI
• Examining what changed between first and second AMI might help understand what factors are associated with increased survival following AMI

Possible Explanations

• Change in Personal Habits or Lifestyle
 – Diet
 – Exercise
• Change in Medical Profile
 – Medication
• Change in AMI awareness
 – Early Identification of onset of AMI
• Subsequent AMIs are different
 – Side-effects of interventions (re-stenosis)
 – Recurrent AMIs are milder?
• “Hardy person” effect

Impact on Medical System

• Identify when someone is at risk
 – “Missed Opportunities” Paper (under review)
 – Further research
• Targeted group - modify behavior/knowledge
 – Diet
 – Exercise
 – Medicines
 – Detection

Questions?

CMS Project on AMI Trend

• Apply risk-adjustment models to explain trend
 – “Risk Adjustment Models to Examine AMI Mortality Trend”
 • Ash, Posner, Chaisson, Speckman, Franco, Yacht, Caldwell, Hadad, Medkowitz
 • Report to CMS (HCFA) in 2001, updated in 2002
 – “Using Claims Data to Examine Mortality Trends Following Hospitalizations for Heart Attack in Medicare”
 • Ash, Posner, Speckman, Franco, Yacht, Bramwell
 • Health Services Research (2003), vol. 38, no.5, pp.1253-1262